

I B.TECH-II SEMESTER
DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS
(Common to All Branches)

Subject Code: 23BS2T01

L T P C
3 0 0 3

Course Objectives:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them in to advanced level by handling various real-world applications.

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Solve the differential equations related to various engineering fields.

CO2: Identify solution methods for partial differential equations that model physical processes.

CO3: Interpret the physical meaning of different operators such as gradient, Curl and divergence.

CO4: Estimate the work done against a field, circulation and flux using vector calculus.

UNITI Differential Equations of First Order and First Degree

Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Orthogonal Trajectories Newton's Law of cooling – Law of natural growth and decay

UNITII Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentary function, Particular integral, General solution, Wronskian, Method of variation of parameters,

Simultaneous linear equations, Applications to L-C-R Circuit problems.

UNITIII Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients - Non homogeneous terms of the type e^{ax+by} , $\sin(ax+by)$,

$\cos(ax+by)$

UNITIV Vector differentiation

Scalar and vector point functions, vector operator Del, Del applies to scalar point functions - Gradient, Directional derivative, del applied to vector point functions-Divergence and Curl, Solenoidal, Irrotational vectors, Scalar Potential Function - Vector identities

UNITV Vector Integration

Line integral- circulation – work done, surface integral-flux, Green's theorem in the plane (with out proof), Stoke's theorem (with out proof), volume integral, Divergence theorem (with out proof) and related problems.

Text books:

1. **Higher Engineering Mathematics**, B.S.Grewal, Khanna Publishers, 2017, 44th Edition
2. **Advanced Engineering Mathematics**, Erwin Kreyszig, John Wiley & Sons, 2018, 10th Edition.

Reference Books:

1. **Thomas Calculus**, George B.Thomas, Maurice D.Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
2. **Advanced Engineering Mathematics**, Dennis G.Zill and Warren S.Wright, Jones and Bartlett, 2018.
3. **Advanced Modern Engineering Mathematics**, Glyn James, Pearson publishers, 2018, 5th Edition.
4. **Advanced Engineering Mathematics**, R.K.Jain and S.R.K.Iyengar, Alpha Science International Ltd., 2021 5th Edition (9th reprint).
5. **Higher Engineering Mathematics**, B.V.Ramana, McGraw Hill Education, 2017

I YEAR I SEM	Course Code:23ES1T01	L	T	P	C
	<i>(for CSE & Allied Branches)</i>	3	0	0	3

Course Code: 23ES2T01
<i>(for CE, EEE, ME & ECE Branches)</i>

BASIC CIVIL AND MECHANICAL ENGINEERING

(Common to All branches of Engineering)

PART A: BASIC CIVIL ENGINEERING

Course Objectives:

- Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- Introduce the preliminary concepts of surveying.
- Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- Get familiarized with the importance of quality, conveyance and storage of water.

Introduction to basic civil engineering materials and construction technique

course Outcomes: On completion of the course, the student should be able to:

CO1: Understand various sub-divisions of Civil Engineering and to appreciate their role in ensuring better society.

CO2: Know the concepts of surveying and to understand the measurement of distances, angles and levels through surveying.

CO3: Realize the importance of Transportation in nation's economy and the engineering measures related to Transportation

CO4: Understand the importance of Water Storage and Conveyance Structures so that the social responsibilities of water conservation will be appreciated.

CO5: Understand the basic characteristics of Civil Engineering Materials and attain knowledge on prefabricated technology.

UNIT I

Basics of Civil Engineering: Role of Civil Engineers in Society- Introduction to Civil Engineering Construction Materials-Cement - Aggregate - Bricks- Cement concrete- Steel- Bitumen-Building Planning & Construction Techniques-Introduction to Prefabricated Construction Techniques

UNIT II

Geotechnical Engineering: Introduction to Properties of soils- Permeability & Seepage- Shear strength-Compaction and Consolidation-Soil exploration-Shallow and Deep Foundations

Structural Engineering: Introduction to Different types of structures-Framed structures- Arches-Suspension bridges-Trusses, Reinforced Concrete Structures-Steel Structures-

Design philosophies-Prestressed concrete structures- Surveying: Introduction to Objectives of Surveying- Horizontal Measurements- Angular Measurements- Bearings- Levelling- Instruments used for levelling -Contour mapping

UNIT III

Transportation Engineering Importance of Transportation in Nation's economic development- Introduction to Types of Highway Pavements- Flexible Pavements and Rigid Pavements - Simple Differences. Basics of Harbour, Tunnel, Airport, and Railway Engineering.

Water Resources and Environmental Engineering: Introduction to Sources of water- Hydrology–Rainwater Harvesting-Water Storage and Conveyance Structures.

Introduction to Quality of water- Specifications- Treatment-Sewage-Disposal

Textbooks:

1. Basic Civil Engineering, M.S.Palanisamy, , Tata McGraw Hill publications(India) Pvt.Ltd. Fourth Edition.
2. Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers.2022. First Edition.
3. Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition.

Reference Books:

1. Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. Fifth Edition.
2. Hydrology and Water Resources Engineering, Santosh Kumar Garg, Khanna Publishers, Delhi. 2016
3. Irrigation Engineering and Hydraulic Structures - Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition.
4. Highway Engineering, S.K. Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition.
5. Indian Standard DRINKING WATER — SPECIFICATION IS 10500-2012.

PART B: BASIC MECHANICAL ENGINEERING

Course Objectives: The students after completing the course are expected to

COB1: Get familiarize with the scope and importance of Mechanical Engineering in different sectors & industries.

COB2: Explain different engineering materials and different manufacturing processes.

COB3: Provide an overview of different thermal and mechanical transmission systems and introduce basics of robotics and its applications.

course Outcomes On completion of the course, the student should be able to

CO1: Understand the different manufacturing processes.

CO2: Explain the basics of thermal engineering and its applications.

CO3: Describe the working of different mechanical power transmission systems and power plants.

CO4: Describe the basics of robotics and its applications

UNIT I

UNIT I Introduction to Mechanical Engineering: Role of Mechanical Engineering in Industries and Society- Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors. Engineering Materials - Metals- Ferrous and Non-ferrous, Ceramics, Composites, Smart materials

UNIT II

Thermal Engineering – [Basic Laws of Thermodynamics](#), working principle of Boilers, Otto cycle, Diesel cycle, Refrigeration and air-conditioning cycles: [Air Refrigeration and Vapour Compression Refrigeration-Working Principles only](#). [Introduction to Pumps and Compressors \(Basics, Classification and Applications only\)](#), IC engines, 2-Stroke and 4-Stroke engines, SI/CI Engines, Components of Electric and Hybrid Vehicles. Power plants – working principle of Steam, Diesel, Hydro, Nuclear [and Combined Cycle](#) power plants ([Layout, Working](#))

UNIT III.

Manufacturing Processes: Principles of Casting, Forming, joining processes, Machining, Introduction to CNC machines, 3D printing, and Smart manufacturing.

Mechanical Power Transmission - Belt Drives, Chain, Rope drives, Gear Drives and their applications. Introduction to Robotics - Joints & links, configurations, and applications of robotics

(NOTE: The subject covers only the basic principles of Civil and Mechanical Engineering systems. The evaluation shall be intended to test only the fundamentals of the subject)

Textbooks:

1. Internal Combustion Engines by V.Ganesan, By Tata McGraw Hill publications (India) Pvt. Ltd.
2. A Tear book of Theory of Machines by S.S. Rattan, Tata McGraw Hill Publications, (India) Pvt. Ltd.
3. An introduction to Mechanical Engg by Jonathan Wicker and Kemper Lewis, Cengage learning India Pvt. Ltd.

Reference Books:

1. AppuuKuttan KK, Robotics, I.K. International Publishing House Pvt. Ltd. Volume-I
2. 3D printing & Additive Manufacturing Technology- L. Jyothish Kumar, Pulak M Pandey, Springer publications
3. Thermal Engineering by Mahesh M Rathore Tata McGraw Hill publications (India) Pvt. Ltd.
4. G. Shanmugam and M.S.Palanisamy, Basic Civil and the Mechanical Engineering, Tata McGraw Hill publications (India) Pvt. Ltd.

L T P C

3 0 0 3

CHEMISTRY

(Common to EEE, ECE, CSE, AIDS, AIML, CSE(AIML))

Course code : 23BS2T03 (EEE,ECE)

23BS1T03(CSE,AIDS,AIML,CSE(AIML))

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches

Course Outcomes:

At the end of the course, the students will be able to:

- Compare the materials of construction for battery and electrochemical sensors.
- Explain the preparation, properties, and applications of thermoplastics & thermosetting, elastomers & conducting polymers.
- Explain the principles of spectrometry, slc in separation of solid and liquid mixtures.
- Apply the principle of Band diagrams in the application of conductors and semiconductors.

UNIT I Structure and Bonding Models:

12 Hours

Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ^2 , particle in one dimensional box, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O₂ and CO, etc. π -molecular orbitals of butadiene and benzene, calculation of bond order.

UNIT II Modern Engineering materials**12 Hours**

Semiconductors, band diagram in solids, Semiconductor devices (p-n junction diode as rectifier and transistors)

Super conductors-Introduction basic concept, applications.

Supercapacitors: Introduction, Basic Concept-Classification – Applications.

Nano materials: Introduction, classification, properties and applications of Fullerenes, carbon nano tubes and Graphines nanoparticles.

UNIT III Electrochemistry and Applications:**12 Hours**

Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry-potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples Primary cells – Zinc-air battery, Secondary cells –lithium-ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygen fuel cell– working of the cells. Polymer Electrolyte Membrane Fuel cells (PEMFC).

UNIT IV Polymer Chemistry**12 Hours**

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, with specific examples and mechanisms of polymer formation.

Plastics –Thermo and Thermosetting plastics, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers–Buna-S, Buna-N–preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid (PGA), Poly Lactic Acid (PLA).

UNIT V Instrumental Methods and Applications**12 Hours**

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. UV-Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies, fundamental modes and selection rules, Instrumentation. Chromatography-Basic Principle, Classification-HPLC: Principle, Instrumentation and Applications.

Textbooks:

1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
2. J.M. Lehn, Supra Molecular Chemistry, VCH Publications

A.D. Madhuri
(Chairman - BOS)

Dr. S Satyaveni
(University Nominee)

Dr. S. Musthafa
(Subject Expert)

Dr. A. Venkateswara Rao
(Subject Expert)

Mr. E. S. V. Subrahmanyam
(Member, BOS)

I YEAR I SEM / I YEAR II SEM	Course Code : 23ES1T03 <i>(for CSE & Allied Branches)</i>	L	T	P	C
		1	0	4	3

	Course Code : 23ES2T03 <i>(for CE, EEE, ME & ECE Branches)</i>			
--	--	--	--	--

ENGINEERING GRAPHICS

UNIT I

Introduction: Lines, Lettering and Dimensioning, Geometrical Constructions and constructing regular polygons by general methods only.

Curves: construction of ellipse, parabola and hyperbola by general method only, Cycloids, Involutes, Normal and tangent to Curves.

Scales: Plain scales, diagonal scales

UNIT II

Orthographic Projections: Reference plane, importance of reference lines or Plane, Projections of a point situated in any one of the four quadrants.

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference plane and parallel to the other reference plane. Projections of Straight Line Inclined to both the reference planes

Projections of Planes: regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane; plane inclined to both the reference planes.

UNIT III

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes, Projection of Solids with axis inclined to one reference plane and parallel to another plane.

UNIT IV

Basic Concept of Sections of Solids: Sections of Solids in simple positions (Cone, Prism, Pyramid)

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

UNIT V

Conversion of Views: Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer graphics: Creating 2D & 3D drawings of objects including PCB and Transformations using Auto CAD (**Not for end examination**).

Text Books:

1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House, 2016.

Reference Books:

1. Engineering Drawing, K.L. Narayana and P. Kannaiah, Tata McGraw Hill, 2013.
2. Engineering Drawing, M.B.Shah and B.C. Rana, Pearson Education Inc, 2009.
3. Engineering Drawing with an Introduction to AutoCAD, Dhananjay Jolhe, Tata McGraw Hill, 2017.

L T P C

3 0 0 3

NETWORK ANALYSIS

(ECE)

Subject Code: 23EE2T02

Course Objectives:

- To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits
- To impart knowledge on applying appropriate theorem for electrical circuit analysis
- To explain transient behavior of circuits in time and frequency domains
- To teach concepts of resonance
- To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

Course Outcomes: At the end of this course students will demonstrate the ability to

- Understand basic electrical circuits with nodal and mesh analysis.
- Analyze the electrical circuit using Network simplification theorems.

- Analyze electrical networks in the Laplace domain and transient analysis
- Infer and evaluate Transient response and Steady state response of a network..
- Compute the parameters of a two-port network.

UNIT I Classification of Sources & Network Theorems

Classification of Sources, Source Transformation techniques, Mesh, Nodal Analysis and Star-Delta conversion.

Network Theorems (D.C circuits): Thevenin's, Norton's, Milliman's, Reciprocity, Max Power Transfer, Tellegen's theorems.

UNIT II Single phase A.C Circuits

Steady State Analysis of A.C Circuits: Impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem.

UNIT III Laplace transformation & Transient analysis

Laplace transform: Introduction to Laplace Transforms, Problem solving using Laplace transforms Partial Expansion Method (Inverse Laplace Transforms)

Transients: Definition of time constants, R-L circuit, R-C circuit and R-L-C circuit with DC excitation using differential equation approach and Laplace transform approach.

UNIT IV Resonance & Magnetic circuits

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance.

Coupled Circuits: Coupled Circuits: Self-inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, conductively coupled equivalent circuits- problem solving.

UNIT V Two-port networks

Two-port Networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h- parameters, Relationships Between parameter Sets, cascading of two port networks.

Textbooks:

1. Network Analysis – ME Van Valkenburg, Prentice Hall of India, revised 3rd Edition, 2019.
2. Engineering Circuit Analysis by William H. Hayt, Jack Kemmerly, Jamie Phillips, Steven M. Durbin, 9th Edition 2020.
3. Fundamentals of Electric Circuits by Charles K. Alexander and Matthew N. O. Sadiku, McGraw-Hill Education.
4. Network lines and Fields by John. D. Ryder 2nd Edition, PHI

Reference Books:

1. D. Roy Choudhury, Networks and Systems, New Age International Publications, 2013.
2. Joseph Edminister and Mahmood Nahvi, Electric Circuits, Schaum's Outline Series, 7th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2017

L T P C**0 0 2 1****CHEMISTRY LAB****(Common to EEE, ECE, CSE& Allied, IT)**

Course code : 23BS2L02 (EEE,ECE)

23BS1L02(CSE,AIDS,AIML,CAE(AIML))

Course Objectives:

- Verify the fundamental concepts with experiments.

Course Outcomes: At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions.
- Prepare advanced polymer Bakelite materials.
- Measure the strength of an acid present in secondary batteries.
- Analyze the IR spectra of some organic compounds.

List of Experiments:

1. Measurement of 10Dq by spectrophotometric method
2. Conductometric titration of strong acid vs. strong base
3. Conductometric titration of weak acid vs. strong base
4. Determination of cell constant and conductance of solutions
5. Potentiometry - determination of redox potentials and emfs

6. Determination of Strength of an acid in Pb-Acid battery
7. Preparation of a Bakelite
8. Verify Lambert-Beer's law
9. Wavelength measurement of sample through UV-Visible Spectroscopy
10. Identification of simple organic compounds by IR
11. Preparation of nanomaterials by precipitation method
12. Estimation of Ferrous Iron by Dichrometry
13. Determination of KMnO₄ using standard oxalic acid solution.
14. Determination of alkalinity of a sample containing Na₂CO₃ and NaHCO₃
15. Determination of copper using standard K₂Cr₂O₇ Solution.
16. To determine the available chlorine in bleaching powder.

Reference:

- "Vogel's Quantitative Chemical Analysis 6th Edition 6th Edition" Pearson Publications by J. Mendham, R.C.Denney, J.D.Barnes and B. Sivasankar

I YEAR I SEM / I YEAR II SEM	Course Code : 23ES1L02 <i>(for CSE & Allied Branches)</i>	L 0	T 0	P 3	C 1.5				
	Course Code : 23ES2L02 <i>(for CE, EEE, ME & ECE Branches)</i>								
ENGINEERING WORKSHOP									
<i>(Common to All branches of Engineering)</i>									
1. Demonstration: Safety practices and precautions to be observed in workshop.									

2. Wood Working: Familiarity with different types of woods and tools used in wood working and make following joints:

- a) Half – Lap joint b) Mortise and Tenon joint and c) Corner Dovetail joint or Bridle joint

3. Sheet Metal Working: Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal jobs from GI sheets:

- a) Tapered tray b) Elbow pipe c) Brazing

4. Fitting: Familiarity with different types of tools used in fitting and do the following fitting exercises:

- a) V-fit b) Semi-circular fit c) Bicycle tyre puncture and change of two-wheeler tyre.

5. Electrical Wiring: Familiarity with different types of basic electrical circuits and make the following connections:

- a) Parallel and series b) Two-way switch c) Godown lighting d) Tube Light e) Soldering of wires

6. Foundry Trade: Demonstration and practice on Moulding tools and processes, Preparation of Green Sand Moulds for given Pattern.

7. Welding Shop: Demonstration and practice on Arc Welding and Gas welding. Preparation of Lap joint and Butt joint.

8. Plumbing: Demonstration and practice of Plumbing tools, Preparation of Pipe joints with coupling for same diameter and with reducer for different diameters

Text Books:

1. Basic Workshop Technology: Manufacturing Process, Felix W.; Independently Published,2019.

2. Workshop Processes, Practices and Materials; Bruce J. Black, Routledge publishers, 5th Edn. 2015.
3. A Course in Workshop Technology Vol I. & II, B.S. Raghuwanshi, Dhanpath Rai & Co., 2015 & 2017.

Reference Books:

1. Elements of Workshop Technology, Vol. I by S. K. Hajra Choudhury & Others, Media Promoters and Publishers, Mumbai. 2007, 14th edition
2. Workshop Practice by H. S. Bawa, Tata-McGraw Hill, 2004.
3. Wiring Estimating, Costing and Contracting; Soni P.M. & Upadhyay P.A.; Atul Prakashan, 2021-22

I Year - II Semester	Code: 23ES2L03	L	T	P	C
		0	0	2	1

IT WORKSHOP

(CE/EEE/ME/ECE)

Course Objectives:

- To introduce the internal parts of a computer, peripherals, I/O ports, connecting cables
- To demonstrate configuring the system as Dual boot both Windows and other Operating Systems Viz. Linux, BOSS
- To teach basic command line interface commands on Linux.
- To teach the usage of Internet for productivity and self-paced life-long learning
- To introduce Compression, Multimedia and Antivirus tools and Office Tools such as Word processors, Spread sheets and Presentation tools

Course Outcomes:

CO1: Perform Hardware troubleshooting.

CO2: Understand Hardware components and inter dependencies.

CO3: Safeguard computer systems from viruses/worms.

CO4: Document/ Presentation preparation. CO5: Perform calculations using spreadsheets

PC Hardware & Software Installation

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot (VMWare) with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Task 5: Every student should install BOSS on the computer. The system should be configured as dual boot (VMWare) with both Windows and BOSS. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of La TeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of La TeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using La TeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using La TeX and Word to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both La TeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and

Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

EXCEL

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2: Calculating GPA -. Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function,

LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

POWER POINT

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

AI TOOLS – ChatGPT

Task 1: Prompt Engineering: Experiment with different types of prompts to see how the model responds. Try asking questions, starting conversations, or even providing incomplete sentences to see how the model completes them.

- Ex: Prompt: "You are a knowledgeable AI. Please answer the following question: What is the capital of France?"

Task 2: Creative Writing: Use the model as a writing assistant. Provide the beginning of a story or a description of a scene, and let the model generate the rest of the content. This can be a fun way to brainstorm creative ideas

Ex: Prompt: "In a world where gravity suddenly stopped working, people started floating upwards.

Write a story about how society adapted to this new reality."

Task 3: Language Translation: Experiment with translation tasks by providing a sentence in one language and asking the model to translate it into another language. Compare the output to see how accurate and fluent the translations are.

Ex:Prompt: "Translate the following English sentence to French: 'Hello, how are you doing today?'"

Text Books:

Reference Books:

1. Comdex Information Technology course tool kit, Vikas Gupta, WILEY Dream tech, 2003
2. The Complete Computer upgrade and repair book, Cheryl A Schmidt, WILEY Dream tech, 2013, 3rd edition
3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education, 2012, 2nd edition

Reference Books:

4. PC Hardware - A Handbook, Kate J. Chase, PHI (Microsoft)
5. LaTeX Companion, Leslie Lamport, PHI/Pearson.
6. IT Essentials PC Hardware and Software Companion Guide, David Anfins on and Ken Quamme. – CISCO Press, Pearson Education, 3rd edition
7. IT Essentials PC Hardware and Software Labs and Study Guide, Patrick Regan – CISCO Press, Pearson Education, 3rd edition

Dr. N Ramakrishnaiah, Professor of CSE. UCEK, JNTUK Kakinada.	Dr. C Krishna Mohan, Professor of CSE, IIT Hyderabad.	Dr. P Radha Krishna, Professor of CSE, NIT Warangal.	Narayana Rao Routhu, Technology Manager, Hidden Brains, Ahmadabad.	Dr. S Rao Chintalapudi, Professor and HoD, CSE(AIML) CMR Technical Campus, Hyderabad.	Dr. B S N Murthy Professor of CSE, BVCEC.

NETWORK ANALYSIS & SIMULATION LABORATORY

(ECE)

Subject Code: 23EE2L02

Course Objectives:

- To gain hands on experience in verifying Kirchoff's laws and network theorems
- To analyze transient behavior of circuits
- To study resonance characteristics
- To determine 2-port network parameters

Course Outcomes:

- Verify Kirchoff's laws and network theorems.
- Measure time constants of RL & RC circuits.
- Analyze behavior of RLC circuit for different cases.
- Design resonant circuit for given specifications.
- Characterize and model the network in terms of all network parameters.

The following experiments need to be performed using both Hardware and simulation Software.

List of Experiments:

(Any 10 of the following experiments are to be conducted)

1. Verification of Network Reduction Techniques.
2. Verification of mesh and nodal analysis
3. Verification of Thevenin's & Norton theorems
4. Verification of maximum power transfer theorem
5. Verification of Reciprocity and Millimans theorems
6. Verification of Tellegen's theorem for two networks of the same topology.
7. Determination Self, Mutual Inductance and Coefficient of Coupling
8. Simulation of RL & RC networks
9. Simulation of RLC network
10. Find the Q Factor and Bandwidth of a Series and Parallel Resonance circuit.
11. Determination of open circuit (Z) and short circuit (Y) parameters
12. Determination of hybrid (H) and transmission (ABCD) parameters

Hardware Requirements:

Regulated Power supplies, Analog/Digital Function Generators, Digital Multimeters, Decade Resistance Boxes/Rheostats, Decade Capacitance Boxes, Ammeters (Analog or Digital), Voltmeters (Analog or Digital), Active & Passive Electronic Components

Software requirements:

Multisim/ Pspice/Equivalent simulation software tool, Computer Systems with required specifications

References:

1. Network Analysis – ME Van Valkenburg, Prentice Hall of India, revised 3rd Edition, 2019.
2. Engineering Circuit Analysis by William H. Hayt, Jack Kemmerly, Jamie Phillips, Steven M. Durbin, 9th Edition 2020.

NSS/NCC/SCOUTS & GUIDES/COMMUNITY SERVICE

(Common to All branches of Engineering)

23BS1L05([(CSE,AIDS,AIML,CSE(AIML)])

23BS2L05 (CE,EEE,MEC,ECE)

Course Objectives:

The objective of introducing this course is to impart discipline, character, fraternity, teamwork, social consciousness among the students and engaging them in selfless service.

Course Outcomes: After completion of the course the students will be able to

CO1: Understand the importance of discipline, character and service motto.

CO2: Solve some societal issues by applying acquired knowledge, facts, and techniques.

CO3: Explore human relationships by analyzing social problems.

CO4: Determine to extend their help for the fellow beings and downtrodden people.

CO5: Develop leadership skills and civic responsibilities.

UNIT I Orientation

General Orientation on NSS/NCC/ Scouts & Guides/Community Service activities, career guidance.

Activities:

- i) Conducting –ice breaking sessions-expectations from the course-knowing

- personal talents and skills
- ii) Conducting orientations programs for the students –future plans-activities-releasing road map etc.
 - iii) Displaying success stories-motivational biopics- award winning movies on societal issues etc.
 - iv) Conducting talent show in singing patriotic songs-paintings- any other contribution.

UNIT II Nature & Care

Activities:

- i) Best out of waste competition.
- ii) Poster and signs making competition to spread environmental awareness.
- iii) Recycling and environmental pollution article writing competition.
- iv) Organising Zero-waste day.
- v) Digital Environmental awareness activity via various social media platforms.
- vi) Virtual demonstration of different eco-friendly approaches for sustainable living.
- vii) Write a summary on any book related to environmental issues.

UNIT III Community Service

Activities:

- i) Conducting One Day Special Camp in a village contacting village-area leaders- Survey in the village, identification of problems- helping them to solve via media-authorities-experts-etc.
- ii) Conducting awareness programs on Health-related issues such as General Health, Mental health, Spiritual Health, HIV/AIDS,
- iii) Conducting consumer Awareness. Explaining various legal provisions etc.
- iv) Women Empowerment Programmes- Sexual Abuse, Adolescent Health and Population Education.
- v) Any other programmes in collaboration with local charities, NGOs etc.

Reference Books:

1. Nirmalya Kumar Sinha & Surajit Majumder, *A Text Book of National Service Scheme* Vol; I, Vidya Kutir Publication, 2021 (ISBN 978-81-952368-8-6)
2. *Red Book - National Cadet Corps – Standing Instructions Vol I & II*, Directorate General of NCC, Ministry of Defence, New Delhi
3. Davis M. L. and Cornwell D. A., “Introduction to Environmental Engineering”, McGraw Hill, New York 4/e 2008
4. Masters G. M., Joseph K. and Nagendran R. “Introduction to Environmental Engineering and Science”, Pearson Education, New Delhi. 2/e 2007
5. Ram Ahuja. *Social Problems in India*, Rawat Publications, New Delhi.

General Guidelines:

1. Institutes must assign slots in the Timetable for the activities.
2. Institutes are required to provide instructor to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting vivavoce on the subject.

*** *** ***

