

BONAM VENKATA CHALAMAYYA ENGINEERING COLLEGE (Autonomous)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Odalarevu, Allavaram Mandal, East Godavari District, Andhra Pradesh, India - 533210. Email: <u>bvce@bvcgroup.In</u> Landline: 08856250370

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ALUMNI FEEDBACK FOR PO AND PSO ASSESSMENT

Student Name	
Regd. No.	
Passed Out Year	
Email Id	
Contact No.	

Dear Alumnus,

As you are aware, it our attempt to match the quality of education to global standards we have introduced outcome-based education system with well-defined programme outcomes and have placed special focus on student centric learning. We would like to know your views on how far we have been successful in this effort and what more we need to do in this direction.

Assessment of the Program Outcomes and Program Specific Outcomes

3 = fully attained **2** = partly attained **1** = attained very little

PO #	Programme Outcomes	Acquired
		Level
PO 1	ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering	
	fundamentals, and an engineering specialization to the solution of complex engineering	
	problems.	
PO 2	PROBLEM ANALYSIS: Identify, formulate, research literature, and analyse complex	
	engineering problems reaching substantiated conclusions using first principles of mathematics,	
	natural sciences, and engineering sciences.	
PO 3	DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering	
	problems and design system components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the cultural, societal, and	
	environmental considerations.	
PO 4	CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based	
	knowledge and research methods including design of experiments, analysis and interpretation	
	of data, and synthesis of the information to provide valid conclusions.	

PO 5	MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and		
	modern engineering and IT tools including prediction and modelling to complex engineering		
	activities with an understanding of the limitations.	l	
PO 6	THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge		
	to assess societal, health, safety, legal and cultural issues and the consequent responsibilities	l	
	relevant to the professional engineering practice.	l	
PO 7	ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional		
	engineering solutions in societal and environmental contexts, and demonstrate the knowledge	l	
	of, and need for sustainable development.	l	
PO 8	ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and	 	
	norms of the engineering practice.	l	
PO 9	INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member	 	
	or leader in diverse teams, and in multidisciplinary settings.	l	
PO 10	COMMUNICATION: Communicate effectively on complex engineering activities with the	 	
	engineering community and with society at large, such as, being able to comprehend and write	l	
	effective reports and design documentation, make effective presentations, give and receive	l	
	clear instructions.	l	
PO 11	PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding		
	of the engineering and management principles and apply these to one's own work, as a member	l	
	and leader in a team, to manage projects and in multidisciplinary environments.		
PO12	LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to		
	engage in independent and life-long learning in the broadest context of technological change.		
PSO #	Program Specific Outcomes		
PSO 1	Gain capability to use current techniques, skills & tools necessary for carrying out		
	multidisciplinary projects.	l	
PSO 2	Acquaint with the contemporary trends in industrial/research setting and thereby		
	innovate novel solutions to existing problems		